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Abstract—Task planning capabilities are crucial for intelligent
robots to operate autonomously in the physical world. However,
traditional Planning Domain Definition Language (PDDL) based
methods often suffer from combinatorial explosion and unsat-
isfactory planning time. In this paper, we propose enhancing
robot task planning with large language models (LLMs) in an
innovative way - using LLMs to guide the search process of
PDDL planners rather than replacing PDDL planning completely.
The LLMs guide the search process of PDDL planners with
learned heuristics and provide constraint reasoning to reduce the
search space. To address potential pitfalls of LLMs, a verification
mechanism is added at the execution stage to validate plan
correctness. We evaluated our method on a real scenario, end-
of-life vehicle battery disassembly. Experimental results demon-
strate that incorporating LLMs into the planning pipeline can
significantly improve planning efficiency and scalability while
maintaining plan validity. This research provides a promising
direction towards integrating language models with classical
approaches to boost robot intelligence for practical applications.
The proposed framework makes a solid step forward in en-
hancing the task planning capability of future intelligent robotic
systems.

Keywords—robot, task planning, LLM

I. INTRODUCTION

Recently, the revolutionary progress in the field of natu-
ral language processing (NLP) dominated by large language
models (LLM) has attracted a lot of attention. Many attempts
have been made to advanced models to solve general tasks
in different fields, which to a certain extent demonstrates
the advantages of the increased model scale. However, when
dealing with some reasoning problems involving arithmetic or
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symbolic reasoning, the result is often unsatisfactory if the
problem is directly used as input [1].

Studies have confirmed that prompting with expected input-
output paradigms enables the model to perform in-context few-
shot learning, thereby improving its performance on various
tasks [2]. In extensive practice, it has been found that when
LLMs are asked to reason in steps, they tend to produce more
robust solutions, especially for the aforementioned problems.
On this basis, chain-of-thought (CoT) prompting is proposed
by Wei et al. (2023) [3] to induce the model to make
step-by-step reasoning by inserting intermediate reasoning
steps between input-output paradigms. Tree-of-thought (ToT)
prompting is improved on CoT by Yao et al. (2023) [4],
generating tree-structured thought steps and introducing a
self-evaluation mechanism. Through few-shot learning, the
intermediate reasoning steps are quantitatively evaluated, and
subsequently the most reliable chain of thought is obtained
with a search algorithm.

There have been some works attempting to apply LLMs to
robot perception, control, and task and motion planning. Defin-
ing a set of high-level robot APIs or function library, Vemprala
et al. (2023) succeeded in performing robotic manipulation
tasks in a self-programmed manner with the help of ChatGPT
[5]. Other approaches implement task and motion planning by
developing customized LLMs for robotic manipulation, which
take multi-modal prompts as input to enable robotic agents
with embodied intelligence to understand instructions and
perform corresponding tasks [6]—[8]. These models seem to
have good generalization ability, but they still cannot overcome
the LLM hallucination, and the probability of failure cannot
meet actual needs, especially in industrial scenarios.

In our previous works [9], we have proposed an architecture
of Neuro-symbolic task and motion planning (TAMP) to tackle

90
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 19,2024 at 13:01:33 UTC from IEEE Xplore. Restrictions apply.



the uncertainty issues in the human-robot hybrid disassembly
pipeline under the unstructured conditions, aiming to replace
workers in repetitive tasks with low-complexity, such as screw
removal. Planning Domain Definition Language (PDDL) [10]-
[12] is used to formally define the disassembly tasks and
primitives for Neuro-symbolic TAMP. To represent system
states in detail, neural predicates are introduced to map sensor
data to quasi-symbolic states using neural networks. In the
planner, the set of neural predicates is represented as a state
node, and an action plan is obtained through logical search
algorithms such as breadth-first search (BFS).

However, such traditional algorithms often lead to problems
such as combinatorial explosion and unsatisfactory planning
time. In order to eliminate these shortcomings, this paper made
attempts to guide the search process of PDDL planners via
LLMs. The challenge is how to make the model understand
PDDL and induce it to generate feasible plans while maintain-
ing a limited search space (especially when a large number of
predicates and primitives involved). In our proposed reasoning
engine, we introduced LLMs to guide the search process of
PDDL planners with learned heuristics and perform constraint
reasoning. To improve the robustness and reliability of rea-
soning, we deliberately designed the prompts and developed a
three-layer nested search mechanism to address potential pit-
falls of LLMs. Through a series of experiments, we compared
the performance of different prompting methods and prompt
compositions, and discussed how to stably generate executable
sequences that are coordinated with the real-time status of the
working scene.

II. LLM-BASED ROBOTIC MANIPULATION TASK PLANNING

The Neuro-symbolic artificial intelligence (AI) framework
implemented in our work forms a closed-loop control system
for robots that cohesively integrates reasoning and decision-
making with perception and control by fusing the reason-
ing ability of the symbolic system and the perception and
learning ability of the neural systems. As input to the neu-
ral networks, multi-modal sensory information are extracted
into neural predicates. To perform the screw removal task,
a set of independent action primitives inspired from work-
ers’ manual operations were designed in advance. Formal
definition of these primitives in PDDL described in terms
of relevant parameters, preconditions and expected effects
were given based on the aforementioned predicates (see
https://sites.google.com/view/robot-1lm). When performing a
task, the robot initially senses the environment, generates a
feasible action plan based on the system state, and then exe-
cutes it in sequence. The robot continuously checks the current
state and will re-plan if it is inconsistent with expectations.
In our previous work, a first-in-first-out (FIFO) based BFS
algorithm (as shown in Algorithm 1) was used to generate the
solution with the fewest operations [13].

Obviously, when the number of predicates and primitives
increases, the time complexity of this algorithm will increase
significantly, which is not conducive to frequent real-time
reasoning. Since our ideal goal is to enable robots to solve

problems with complete autonomy, that is, to plan and execute
solely through perception of the external environment and self-
awareness, we are bound to explore some options to replace
the existing task planning module. Recently, We are interested
in applying the popular LLMs to task planning for robots,
so that the robot can make decisions on its own rather than
by human-designed algorithms. Therefore, we developed a
task planning method introducing the state-of-the-art language
model, GPT-4 [14].

The architecture of the robotic manipulation task planning
is as Figure 1 shows, including a reasoning engine and a veri-
fication engine that interact with the working scene. As Figure
2(b) shows, we use prompts to generate action plans, including
descriptions of predicates and primitives, introduction to work
scenarios, definition of planning rules, task instructions, and
exemplars containing some positive and negative samples in
the reasoning engine. Predicates and primitives serve as key
elements of the reasoning engine. The definition of planning
rules and task instructions are used to intuitively convey the
concept of PDDL to the language model, as well as the task
goals and corresponding implementation means. On account
of the uncertainty in reality, we introduced a verification
engine that interacts with the work scenario in real time. Since
our system is derived from PDDL, the verification engine
performs a secondary check on the predefined preconditions of
each primitive before execution to ensure that the robot only
executes when all conditions are met, otherwise the reasoning
engine is required to re-plan based on the current situation.

Many studies have demonstrated that LLMs perform poorly
on complicated zero-shot reasoning tasks, and even simple
few-shot learning is not enough to meet the needs at the
application level [2]. Inspired by the good performance of
the collaborative mechanism of the proposal module and the
evaluation module applied in ToT in solving general problems,
we proposed a three-layer framework to build our reasoning
engine. Unlike existing methods such as CoT that sample
complete chains of thought, we generate a thought tree that
maintains a certain size, in which each thought node consists
of a coherent language sequence as an intermediate stage in
solving the problem (shown in Figure 2(a)). As is illustrated
in Figure 3, this structure allows the language model to
check the feasibility of each sampled intermediate thought
node instantiated in PDDL and subsequently evaluate it, so
as to achieve deliberate reasoning by autonomously deciding
whether to retain or discard nodes based on the score of the
decision obtained by few-shot learning, and consequently gen-
erate a reliable complete thought chain to solve the problem.
Naturally, proposals judged as "NO” in the self-evaluation
mechanism will be rejected, while those judged as "YES”
are considered to be retainable, among which those judged
as "SURE” have a higher priority than "LIKELY".

Within our proposed framework, a variety of search algo-
rithms can be plugged in, such as the BFS and DFS algorithms
proposed in [4]. When the search space is large, DFS can
be used to quickly obtain an executable primitive sequence,
improving the efficiency of task planning. In order to save
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the execution time of the robot, BFS can be applied to find
the shortest operation path. Moreover, with the robustness
brought by the self-evaluation mechanism, the LLM can also
be directly commanded to autonomously generate a complete
plan with the shortest steps at once. On this basis, we can
implement heuristic search by directly accessing LLM instead
of pre-programming or learning, thus making this autonomous
system closer to embodied intelligence.

III. EXPERIMENTS AND RESULTS

In order to test the performance of our proposed reason-
ing engine, we conducted a series of simulation and real-
machine experiments combined with Neuroysmbolic TAMP
using both GPT-3.5 and GPT-4. We used natural language
and key-value pairs composed of variable names and Boolean
values respectively to express predicates and perform thought

sampling in the thought generator, and compared the reliability
of the two descriptions. An ablation study was also conducted
on components of the prompt. For the feasibility checker
and effect predictor in the inference engine, we also con-
ducted independent simulation experiments to examine their
performance. Furthermore, we connected our planner to the
original Neuro-symbolic TAMP, conducted experiments in real
scenarios, analyzed its comprehensive performance based on
the results, and compared it with existing LLM-based planning
methods, such as CoT.

A. Comparison of Different Descriptions

To explore how to make LLM better understand the concept
of PDDL, we selected two forms: ordinary natural language
and concise key-value pairs, to express the predicate and then
describe the system state. Given the current and goal states,
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Algorithm 1: Neuro-symbolic TAMP for Disassembly Task

Input: Sy, 56,4 ;
Output: op_list ;

initial_queue(Q,);

O1.enqueue((So,{})) ;
primitives, initial state is empty */

while Q; # null do

curr_status,curr_op_list = Qy.pop_front();

initial_set (tmp_set) ;

for a in A do ;

if curr_status O a.precondition then
new_status = apply(curr_status,a);
new_op_list = curr_op_list +a;
if new_status O SG then

| return new_op_list

end
tmp_set.add((new_status,new_op_list));

end

end

for ¢ in L do

| Qi.enqueue(r);
end

end

/* Initial State, Target State, Primitive set x/
/* primitive sequence to accomplish the task */

/* Initialize Q1, The initial state of the planning is Sp; {} is the list of disassemble action

/* Temporarily record the current state and the new state after using the operation primitive x/
/* Traverse all of the action primitives definition in the planning problem x/

/* Apply action primitives a to the current state x/

/+ Achieve the goal state =/

List L = sort_and_filter(tmp_set); /* Sort the tmp set tuples by likelihood and filter out tuples with a low probability =*/

/* Add the tuples into the queue that meet the requirements «/

TABLE I
FEASIBILITY OF PLANNING UNDER DIFFERENT DESCRIPTION TYPES

Descritpion Success Rate
GPT-3.5 | GPT-4
Natural Language 38.8% 100.0%
Key-value Pairs 33.8% 95.0%

single-step sampling was performed in the thought generator,
and the feasibility of the thought (whether it was executable
in the context of PDDL) was treated as the criterion in the
zero-shot case. Randomly selected from 8 legal system states
as the initial state, 400 sets of samples were collected under
each description type, and the results are shown in Table I.
It can be found that for each specific model, the feasibility
of the plan generated using natural language description is
slightly higher than that of key-value pairs without significant
difference. In subsequent experiments, standardized key-value
pair descriptions were used to conveniently generate prompts.

B. Ablation Study on Components of the Prompt

For logical reasoning methods that rely on LLMs, the
design of prompts is crucial. In our planner, prompts are
divided into 6 main sections, among which description of
primitives, instructions and questions are indispensable. To
analyze the role played by the remaining components, we
conducted ablation studies in GPT-3.5. In each case, 160
random samples of single-step planning with 3 randomly
selected feasible examples in the exemplar component were
performed. As shown in Table II, narrative content such as
scenarios and rules did not meaningfully promote the gener-
ation of feasible solutions. On the contrary, the introduction
of exemplars brought a non-negligible improvement reaching
58.1% in performance, sparking our interest in the impact
of different numbers of exemplars. It can be observed from
Figure 4 that for unchecked single-step sampling, simply
increasing the number of examples cannot further improve the
success rate of planning. Therefore the reasoning framework

TABLE I
ABLATION STUDY RESULTS WITH DIFFERENCT PROMPT COMPONENTS

Prompt Component
Scene introduction | Rule definition

v

Success Rate

30.6%
- 38.1%
23.1%
56.9%
24.4%
50.6%
51.9%
58.1%

Exemplars

<

ENENE

v
v
v

<
ANENENE

v

we proposed including a checking mechanism as well as an
evaluation mechanism is necessary.

C. Comparison of Comprehensive Performance Using Differ-
ent Approaches

Before judging the overall performance of our proposed
reasoning engine, simulation tests were conducted on the
feasibility checker and the effect predictor respectively. Since
they essentially acted as classifiers for the output of the
thought generator, each category was given an example as
a reference in the experiment. For 720 randomly generated
thoughts, the feasibility checker’s accuracy was as high as
99.2%. In advance, the net contribution of the primitive’s effect
to moving closer to the goal state was treated as the criterion
for the effect predictor, that is, a positive change of no less
than two predicates would be judged as "SURE”, otherwise it
would be "LIKELY”. With the same sample size, the accuracy
was only 63.8%, but fortunately, this would not affect the
feasibility of the plan.

Subsequently, we connected the reasoning engine to the
Neuro-symbolic TAMP proposed in our previous work and
conducted experiments in real scenarios to test its comprehen-
sive performance in GPT-3.5. In this experiment, we used a
search strategy similar to BFS, but limited the search space.
At each level of the search tree, thought generation was
stopped when two different feasible solutions were obtained,
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and if not satisfied, up to five thoughts would be generated
(in practice, it turned out to be enough to ensure at least
one feasible solution). During the layer-by-layer iteration, no
more than two feasible thought nodes were maintained, and
the shortest thought chain was finally transformed into the
task planning solution and exported to the robot arm for
execution. The robust execution of the primitives was ensured
through the verification engine proposed that interacted with
the working scenario. As shown in Figure 4, our reasoning
engine achieved excellent performance even given only one
exemplar. In 160 sets of experiments with randomly selected
initial states, the success rate of generating a complete feasible
action sequence reached 95.7%, which was much higher than
unsupervised single-step planning and the existing popular
LLM-based prompting method CoT. And in execution, due
to the existence of the verification engine, incorrect plans that
were inconsistent with reality would be re-planned, ensuring
that the success rate of system work reached 100%.

IV. DISCUSSIONS

We provide a reliable and efficient robot planning execution
system by seamlessly integrating LLMs and logical reasoning.
We can adjust the number of steps in each generation to
adapt to different LLMs so as to meet deployment needs. The
existence of the verification engine prevents us from worrying
about the influence of LLM hallucination. However, we are
currently only applying it to the relatively simple scenario
of removing bolts. Due to the limited number of primitives
and predicates, we cannot yet make a very accurate efficiency
comparison. In the future, we will conduct more extensive
research in more complex scenarios.
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